
ECEN 3350 September 4, 2020
Programming Digital Systems Project 1: Basic Assembly Programming

Project 1: Basic Assembly Programming
This project is due on September 18, 2020 at 6 p.m. and counts for 5% of your course grade. Late
submissions are not accepted. If you have a conflict due to travel, interviews, etc., please plan
accordingly and turn in your project early.

The code and other answers you submit must be entirely your own work, and you are bound by
the Honor Code. You may consult with other students about the conceptualization of the project
and the meaning of the questions, but you may not look at any part of someone else’s solution or
collaborate with others to develop a solution. You may consult published references, provided that
you appropriately cite them (e.g., with program comments), as you would in an academic paper.

Solutions must be submitted electronically via Moodle, following the submission checklist below.

Introduction
In this project, you will program a simple assembly program, and run it on the DE10-Lite board.
We will extend the Simple Program from the DE10-Lite setup tutorial. If you have not already done
so, we recommend you program this on your board, and verify that toggling the switches toggles
the corresponding LED above the switch.

Objectives:
• Understand how to create projects and program the DE10-Lite board.

• Use Nios II assembly to do basic bit manipulation of registers.

• Understand how a CPU interprets and executes instructions.

Part 0. Installing Software
We will be using the DE10-Lite board for this course (http://de10-lite.terasic.com/). You
will need to purchase one yourself or borrow from another student (though your work should be
your own).

Operating System
The software we will use only runs on Windows or Linux (I’m using it on Ubuntu 16.04). You
should consider using a virtual machine if you have a Mac—VirtualBox is highly recommended
(https://www.virtualbox.org/)—or you can use Parallels, VMWare, or dual boot using Apple
Bootcamp.

Utilities
We will be editing code, so you’ll need a text editor. On Linux, you can use vim or emacs. For
Windows, NotePad++ (https://notepad-plus-plus.org/) is recommended. We will also need
to compress (tarball) files. This utility (tar) will already exist on Linux, but for Windows we
recommend 7-zip (http://www.7-zip.org/).

Install the Quartus Software
Download the Quartus Lite 16.1 Software: http://dl.altera.com/16.1/?edition=lite. Note:
this will require you to register/create an Intel account.

This is a 5.8 GB file, so I recommend downloading from campus or somewhere with fast Internet.

Linux

For Linux, extract the tar file ($ tar xf Quartus-lite-16.1.0.196-linux.tar), and run the
setup ($./setup.sh). Follow the prompts, making note of the directory it installs to (mine installs
to ~/intelFPGA_lite/16.1/).

Windows

Run the EXE and install to C:\altera_lite\16.1.

Install the Monitor Program
Download the University Monitor Program for your operating system, for Quartus 16.1: https://
www.intel.com/content/www/us/en/programmable/support/training/university/materials-software.
html?&ifup_version=16.1#University-Program-Installer.

2

http://de10-lite.terasic.com/
https://www.virtualbox.org/
https://notepad-plus-plus.org/
http://www.7-zip.org/
http://dl.altera.com/16.1/?edition=lite
https://www.intel.com/content/www/us/en/programmable/support/training/university/materials-software.html?&ifup_version=16.1#University-Program-Installer
https://www.intel.com/content/www/us/en/programmable/support/training/university/materials-software.html?&ifup_version=16.1#University-Program-Installer
https://www.intel.com/content/www/us/en/programmable/support/training/university/materials-software.html?&ifup_version=16.1#University-Program-Installer

Figure 1: Monitor Program download page — Make sure you’re downloading version 16.1.

Linux

Extract the tar ($ tar xf ./intel_fpga_upds_setup.tar) and
run the installer ($./install_intel_fpga_upds).
You may need to provide paths to Quartus and to nios2eds. These are in your ~/intelFPGA_lite
directory.
For example, I provided:
/home/ewust/intelFPGA_lite/16.1/quartus/
/home/ewust/intelFPGA_lite/16.1/nios2eds/
when prompted by the installer.

As described in usb_blaster.txt, copy the following into a new file in
/etc/udev/rules.d/51-usbblaster.rules (as root):

USB-Blaster
SUBSYSTEM=="usb", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6001", MODE="0666"
SUBSYSTEM=="usb", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6002", MODE="0666"
SUBSYSTEM=="usb", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6003", MODE="0666"

USB-Blaster II
SUBSYSTEM=="usb", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6010", MODE="0666"
SUBSYSTEM=="usb", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6810", MODE="0666"

You’ll then need to restart udev (or reboot your computer). Using systemd:

1. $ sudo service udev restart

2. $ sudo udevadm control –reload-rules

3. $ sudo udevadm trigger

You should be able to run the Monitor program:
$ cd ~/intelFPGA_lite/16.1/University_Program/Monitor_Program/
$./bin/altera-monitor-program.

3

Windows

Run the downloaded EXE, and follow the provided install instructions. If needed, consult Section
2 of the Monitor Program FPGA Nios II Tutorial: ftp://ftp.intel.com/Pub/fpgaup/pub/
Intel_Material/17.0/Tutorials/Intel_FPGA_Monitor_Program_NiosII.pdf.

Running the Program
Once you have installed both Quartus and the Monitor Program, follow the tutorial in Section 3 of
the Monitor Program FPGA Nios II Tutorial to learn how to create a new project:
ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Intel_FPGA_Monitor_
Program_NiosII.pdf.

Follow the tutorial and create a new Simple Program (in Assembly), and verify that it runs on your
DE10-Lite, and that you can flip the switches and see the corresponding LEDs change. You will
modify the Simple Program for Part 1 of your project next.

If you have trouble with the USB driver (on either Windows or Linux), please consult the Trou-
bleshooting guide: https://ecen3350.rocks/static/usb-blaster.pdf

4

ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Intel_FPGA_Monitor_Program_NiosII.pdf
ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Intel_FPGA_Monitor_Program_NiosII.pdf
ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Intel_FPGA_Monitor_Program_NiosII.pdf
ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/17.0/Tutorials/Intel_FPGA_Monitor_Program_NiosII.pdf
https://ecen3350.rocks/static/usb-blaster.pdf

Part 1. Basic Adder
The DE10-Lite has 10 switches along the bottom right of the board. In the Simple Program,
changing the switches directly changes the LEDs. In this project, we will extend this program to
implement an add operation.
We will split the switches in half: the leftmost 5 switches will represent a binary number, while
the rightmost 5 switches represent a second binary number. The LEDs will display a binary
representation of the sum of these two numbers.

For example, if we wanted to add the numbers 3 and 5, the board should look as follows:

Figure 2: Adding 3+5 — The leftmost five switches encode the binary number 3 (0b00011) and
the rightmost five encode the number 5 (0b00101). The sum of these numbers (8) is displayed in
binary on the LEDs: 0b001000.

You should write this program in assembly. You may use the Simple Program as a starting point
- don’t worry about how the program is reading the state of the switches for now (or writing the
LEDs), that code is provided for you in the Simple Program (reproduced below).
You should assume r4 contains the value of the switches (in a single register), and you must modify
it accordingly to treat it as two 5-bit numbers that you then add together. Interpret the switches and

5

LEDs in big endian, with the most significant bit on the left.
Try different switch configurations to verify that your interpretation of the switches and adding is
correct.

You can base your code on the following example (from simple_program.s):

.text

.equ LEDs, 0xFF200000

.equ SWITCHES, 0xFF200040

.global _start
_start:

movia r2, LEDs # Address of LEDs
movia r3, SWITCHES # Address of switches

LOOP:
ldwio r4, (r3) # Read the state of switches

<Your code to modify r4 here>

stwio r4, (r2) # Display the state on LEDs
br LOOP

.end

Historical fact: The first fully electronic commercially-available calculator was released in 1961.
The ANITA (A New Inspiration To Arithmetic) weighed 33 pounds and used vacuum tubes to add,
subtract, multiply and divide.

What to submit A adder.s file that:

1. Takes two 5-bit binary numbers from the switches and adds them

2. Displays the resulting binary number on the LEDs

Part 2. Understanding assembly

2.1 Interpreting code
Below is some assembly code. Describe what it does, both in plain English, as well as provide
some C code which performs the same functionality. We’re not looking for C code that will compile
to this assembly (it won’t, as there is no main function). Instead, provide C code that shows the
variables, how they are initialized, and what the code looks like.
The below program is a fully working assembly program—you can load it into the Altera Monitor
Program to see how it works. To do that, create a new project of type assembly, and then instead of

6

including a getting started example, you’d skip that part and when it gets to add a file, add this file
(you have to save it as a .S file and put it into your project’s directory first). You can download this
file from https://ecen3350.rocks/static/p1q2.S.

.include "nios_macros.s"

.global _start
_start:

/* the following two instr. (orhi and ori)
are what movia converts to */

orhi r2, r0, %hi(X)
ori r2, r2, %lo(X)
movia r3, Y
movia r4, N
ldw r4, 0(r4)
add r5, r0, r0

LABEL:
ldw r6, 0(r2)
stw r6, 0(r3)
addi r2, r2, 4
addi r3, r3, 4
subi r4, r4, 1
bgt r4, r0, LABEL

STOP:
br STOP

.data
N:

.word 6
X:

.word 5, 3, -6, 19, 8, 12
Y:

.word 0, 0, 0, 0, 0, 0

2.2 Decoding Instructions
Translate the following hex value to Nios II assembly code.

993ff915

2.3 Encoding Instructions
Convert the following assembly into machine code. Your answer should be an 8-digit hex number.

divu r14,r5,r22

7

https://ecen3350.rocks/static/p1q2.S

What to submit A plain text file (e.g. not a word document) named writeup.txt containing
your answers to part 2. You should format this file using this template:

1.
English/C description of assembly

2. decoded instruction (e.g. addi r3, r4, 8)

3. encoded instruction (e.g. 0xDEADBEEF)

Submission Checklist
Upload to Moodle a gzipped tarball (.tar.gz) named project1.identikey.tar.gz. You can
make a tarball with $ tar czf project1-identikey.tar.gz ./writeup.txt ./adder.s.
The tarball should contain only the following files:

Part 1
An assembly file named adder.s that adds the left/right switches and outputs the result (in binary)
to the LEDs.

Part 2
A text file named writeup.txt with your answers to the three short questions, using the template
described previously.

8

